BACKGROUND Resistance Flexibility™ (RF) involves the use of tension and resistance while self or assisted flexibility training compared to traditional methods of stretching that simply use elongation. The resistive forces created by naturally tensing and resisting during RF are two to six times the maximum force produced when strength training the same muscle groups yet no pain is experienced.

METHODS Based on international clinical cases, the Biceps Femoris and the Triceps characteristically house the greatest amount of accumulated dense fascia and scar tissue (ADFST). A Lafayette muscle testing dynamometer was used to measure the differences in maximum forces generated during strength training compared to RF training and a Lafayette Acumar goniometer was used to measure increases in ROM, and shortening capacity in Biceps Femoris and Triceps in individuals ranging in age from 16 to 65.

RESULTS RF™ Significant increases in flexibility with parallel increases in the capacity of the muscles to shorten, and the rate and acceleration of shortening were noted compared to traditional stretching and deep tissue massage techniques.

CONCLUSIONS The forces necessary to cause significant positive changes in fascia structures that result in increases in flexibility and strength can be produced with zero pain during self or assisted RF. Best method to measure increases in flexibility is by measuring the capacity of the muscle to shorten not simply ROM. Removing ADFST also eliminates biomechanical limitations and substitutions, and as well as postural deformations of sway back, lumbar lordosis, thoracic kyphosis, and forward tilt. Further research is warranted.

DISCLOSURE Research supported by The Genius of Flexibility 501(c)(3) Non-Profit Corporation.

REFERENCES
M. R. Pull and C. Ranson. Physical Therapy in Sport, 8 (2007), 88-97,
Cooley RD and Ware NM. "Does Resistance Flexibility result in rapid hamstring
length increases and accelerated range of motion increases because of fascial changes?"
Poster Presentation March 2012, 3rd International Fascia Research Congress, Vancouver, B.C.

©Cooley 2015