The tensegrity of fascia

Saul Yudelowitz BSc(Hons)
Health and Performance Consultancy. 18 Bristol Mews London W9 2JF, UK.
Phone: +44(0)7766915180. Email: handp@live.co.uk

HYPOTHESIS: Can the tensegrity of fascia be used at the hip to affect the foot?

METHODS: 40 subjects who all overpronated, presented with non foot or hip pain. 20 females aged on average 34 years and 20 men aged on average 40. All presented with internally rotated hips bilaterally where one side was more internally rotated than the other. Verbal discussion was used to ask for permission to address the overpronation with one treatment session using a facial technique. While patients were standing weight bearing on one foot, the great toe was passively dorsiflexed and the longitudinal medial arch change was noted. After treating the fascia of the posterior thigh the test was repeated. Both left and right extremities were assessed in the same manner.

RESULTS: All patients showed an increase in the height of the longitudinal medial arch while the great toe was passively dorsiflexed after the fascia of the posterior thigh was treated.

CONCLUSIONS: While all these results are anecdotal, the windlass mechanics of fascia supporting the arches of the foot is well established. All the fascia of the posterior aspect of the thigh, attachment to the Linea aspera. Normal alignment of the hip results in the joint externally rotated due to the anteverision of the hip. An internally rotated hip causes facial drag on the fascia of the posterior aspect of the thigh. Since the facial system is a tensegrity structure, the direct connection from the posterior thigh to the feet will affect foot biomechanics. Balancing the facial tension of the posterior thigh affects the fascia support of the arches of the foot via the windlass mechanics. Further research using a pressure plate should be used to study how fascia of the posterior thigh affects the biomechanics of the foot.